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Preface

The purpose of this study was to filter unwanted

background noise from the evoked response field of the

magneto-encephalogram using adaptive processing techniques.

An adaptive filter, using the evoked response potential

signal obtained from electro-encephalogram measurements, was

used to enhance the evoked response field signal. Accurate

signal estimation of ovoked response fields is a necessary

requiremei.t for future brain studies involving visual and

audio stimulus responses.

No special knowledge or background is required to

understand this research, although some knowledge of digital

signal processing may be helpful in understanding the

concepts of adaptive filtering,, A general discussion of

adaptive filter theory is included in Chapter Two.

Several individuals greatly influenced the direction of

this research. I would like to thank my advisor, Capt Rob

Williams, who conceptualized this study and helped to

develop its overall scope and goals along vith the otizer

committee members who offered their support and advice. A

special thanks is oWed- to Capt Paul DeRego and the rest of

the people at the magnetoencephalography lab at AAMRL who

never complained despite my late friday afternoon data

collection runs. Finally, I owe my wife i and

daughters a very special thanks for

the support that only a family can provide.

Roger A. Wood
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Abstract

'_Adaptive signal processing techniques were used to

filter out unwanted background noise from the evoked

response field signals obtained from magneto-encephalogram

measurements. A model of the evoked response field signals

was first developed to test the adaptive algorithm in an

environment corrupted by white gaussian noise. Several

modeling experiments verified the feasibility of adaptive

filtering using an enhancement design with a correlated

signal representing the evoked potential response obtained

from electro-enchephalogram measurements. The experimental

results showed that signal estimation is improved by a

strong correlation between the evoked response field and

evoked response potential.

Following the modeling experiments, filtering of actual

evoked responses was attempted. To obtain the evoked field

data, an audio or visual stimulus was provided to a test

subject located inside a shielded chamber. Time sequenced

electro-encephalogram and magneto-encephalogram signals were

recorded for later processing using an adaptive filter based

on the least-mean-square algorithm. Accuracy of the

filtered human data could not be quantified due to a lack of

a priori knowledge of the exact signals before filtering.

Comparisons of filtered responses with ensemble averaged

,pponses of up to 80 signals showed waveform similarities.Kil

vii
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ELECTRO-ENCEPHALOGRAM BASED ADAPTIVE ESTIMATION OF

MAGNETO-ENCEPHALOGRAM SIGNALS

I. Introduction

Background

The Air Force Armstrong Aerospace Medical Research

Laboratory (AAMRL), Human Engineering Division, is currently

* studying localization of brain activity and its relationship

to physical stimuli. The analysis of magneto-encephalogram

(MEG) signals is an important part of this research due to

* its non-invasive method of detection. One of AAMRL's

research goals is the detection and estimation of single

evoked neural responses. Of particular interest is the

localization of brain activity in response to a visual or

audio stimulus. An improvement in the measurement accuracy

of these responses by filtering noise components of the MEG

could significantly improve localization.

Problem

The purpose of this research is to investigate the

application of adaptive signal processing techniques, based

on the statistical relationship between MEG and electro-

encephalogram (EEG) signals, to enhance the MEG using an EEG

reference.

.... ------ --- -- mulnlil l l mm m m m1



Summary of Current Knowledae

Current research has shown that electromagnetic field

measurements of the brain can be used as a non-invasive

method of localizing brain activity (7:222). Two measure-

ment and recording techniques, the MEG and the EEG, detect

the weak magnetic and electric fields associated with the

electro-chemical operation of the brain. The MEG and the

EEG evoked responses are difficult to accurately detect due

to their relatively small measurement amplitudes compared to

various sources of noise. Noise filtering of the MEG is ofSi

the most interest because evoked magnetic field measurements

hold greater promise than evoked potential signals in

accurately localizing brain activity.

An adaptive system is time-varying and self-adjusting.

Whereas a fixed (linear) system is designed to operate under

a strict set of input conditions and performance criteria,

the adaptive system continually seeks an optimum performance

based on input conditions that may not be fully known

(11:4). The time-varying nature of MEG signals lead to the

possibility of applying adaptive filtering to the problem of

removing noise related to physiological sources. A signal

enhancing adaptive filter can be applied to MEG signals

using the EEG as a reference signal. This method of

filtering can be applied if there is correlation between the

two signals. The relationship of electric currents and

magnetic fields and observed similarities of signal charac-
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teristics suggest a correlation; however, the question of

correlation has not been definitively answered (1:473-475).

Assumptions

A statistical analysis of MEG and EEG signals will be

undertaken in this research. The raw data for this analysis

was obtained from AAMRL and is assumed to be accurate. No

analysis of data errors is included in this research. This

assumption is required due to the difficulty in defining the

accuracy of the recorded data.

Scope

This study includes a statistical analysis of MEG and

EEG signals and the development of an adaptive filter

computer model to process simulated MEG and EEG signals.

Processing of actual MEG and EEG signals with a computer

implemented adaptive filter is attempted based on the

knowledge gained from the simulated implementation.

Approact,/Methodoloxy

The following steps were followed in solving this

problem:

(1) Analyze the signal and noise characteristics of
the MEG and EEG measurement system.

(2) Perform a statistical study of MEG and EEG signals
using digital signal processing techniques and use the
results of this study to develop models of evoked
response field ana evoked response potential signals.

3
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(3) Develop an adaptive filter using the EEG signal
model with noise to enhance the MEG signal model with
noise and compare the results to the signal models
before noise was added.

(4) Analyze the performance of the adaptive filter
using real human MEG and EEG signals and make
recommendations.

Materials and Equipment

The MEG and EEG data was obtained from AAMRL. This

data was recorded on a floppy disk for processing on a

personal computer. The statistical analysis of these

signals was accomplished using a software package called

DADiSP by DSP Development Corporation. The adaptive filter

and simulated MEG and EEG signals were implemented on a

personal computer. A more detailed description of the data

collecting equipment is available in Chapter IV.

4



II. BACKGROUND

Introduction

It has been shown that electromagnetic field measure-

ments can be used to localize brain activity sources related

to a specific stimulus (7:222). Two measurement and record-

Ing techniques, the electro-encephalogram (EEG) and the

magneto-encephalogram (MEG), detect the weak electric and

magnetic fields associated with the electro-chemical opera-

tion of the brain.

To simplify notation throughout this thesis, the MEG

evoked field will be referred to as an evoked response field

or simply ERF. The EEG evoked potential will be called an

evoked response potential or ERP. Further, background MEG

signals or field measurements not associated with a specific

stimulus, will be referred to as the MEG. Likewise, back-

ground EEG signals, electrical potentials not related to the

stimulus, will be called the EEG.

The ERP and ERF signals are difficult to accurately

detect due to their relatively small measurement amplitudes

compared to various sources of noise and distortion. This

is particularly true of the ERF (6:842). This review will

focus on current knowledge of the ERF and present a method

of filtering the background MEG to improve brain activity

localization.

Noise filtering of ERF signals using adaptive signal

processing methods will be investigated. Adaptive systems

5



can automatically self-optimize in relation to a constantly

changing environment and therefore have application in

several fields of signal processing; however, this review

wiil focus on noise canceling and signal enhancing adaptive

filters. (11:4)

A detailed discussion of ERF characteristics will be

followed by a review of adaptive signal processing.

Finally, methods of filtering MEG signals using adaptive

filtering techniques will be presented.

The Magneto-Encephalogram

Brain activity is characterized by electrical pulses

produced in response to some stimulus. This electro-chem-

ical process occurs specifically in the neuron or nerve

cell. Communication between neurons is accomplished through

a complex network which provides many inputs to the neuron

but only one output. A current pulse is produced at the

output of a neuron only when the summation of input currents

exceeds a particular threshold. Propagation of current

pulses through this network of neurons is the basis of all

brain computation and communication. (4:3)

Electro-encephalogram measurements are obtained by

measuring surface potentials caused by induced cellular

currents related to brain activity. The first measurement

of this kind was by Burger in 1929 (1:469). The general

state of the brain can be interpreted by the evaluation of

the EEG wave frequency, amplitude, form, periodicity, and

6



the locations of the measurement electrodes. Frequencies

of interest are generally low (from 0.5 to 15 hertz) and

amplitudes are measured in microvolts. The analysis of

normal and abnormal EEG patterns using the above criteria

are used as a basis for determining neural abnormalities.

(4:9)

Magneto-encephalography is a non-invasive method of

analyzing brain activity by measuring and recording magnetic

fields above the surface of the head (4:10). The signal

characteristics of the MEG are similar to the EEC because

they are produced by the same electro-chemical neural

currents. However, the MEG has a greater susceptibility to

noise than the EEG due to its much smaller amplitude. For

this reason, the MEG was not accurately measured until 43

years after the first EEG measurements when a highly

accurate device to detect the weak magnetic fields was

introduced. Cohen's first direct MEG trace was recorded in

1967. Since then, magnetic fields suggesting sharp locali-

zation of brain activity have been discovered. (2:9)

Detection of the brain's magnetic fields is accom-

plished by using a Superconducting Quantum Interference

Device (SQUID). The SQUID takes advantage of the measure-

able response of a superconducting current loop due to the

presence of a magnetic flux density (4:17). An important

advantage of the MEG over the EEG is that the SQUID can

detect field components from sources close to the sensor

7



(3:11). The SQUID is designed to be sensitive enough to

detect the weak magnetic fields produced by brain activity

while also eliminating background noise caused by room

lights or machinery (6:842). However, distortion of MEG

signals is also caused by sources that cannot be eliminated

by conventional analog or digital filtering techniques.

This noise is related to physiological sources such as head

and body movements, muscle activity and eye movement

(6:842).

Adaptive Signal ProcessinK

An adaptive system is time-varying and self-adjusting.

Whereas a fixed (linear) system is designed to operate under

a strict set of input conditions and performance criteria,

the adaptive system continually seeks an optimum performance

based on input conditions that may not be fully known

(11:5). Adaptive systems are usually nonlinear and are

therefore difficult to analyze. This disadvantage is

outweighed by the increased system performance obtained

under unknown input conditions (11:4).

Most applications of adaptive processing use a closed

loop design. A generalized block diagram of a closed loop

adaptive filter is shown in figure 2.1. The output of the

processor is compared with some known model of the desired

signal. The difference between these two signals is called

the error signal. The adaptive algorithm adjusts the

8



overall response of the system by minimizing the error.

This is accomplished by continuously adjusting the operating

paremeters of the system processor. (11:20-21)

Adaptive filtering is typically implemented as a

finite impulse response filter or adaptive linear combiner

with varying weights as represented in figure 2.2. The

output of a combiner having k discrete inputs can be written

as

N

y(k) =IWn (k)x(k-n) (2.1)

where

x(k-n) = value of (k-n)th input
y(k) = kth output of combiner
w n(k) = value of weight n for input k.n

d (deuired output)

Adaptive
algorithm

Figure 2.1. Generalized Adaptive Filter (11:9)

9
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Figure 2.2. Adaptive Linear Combiner (11:17)

Defining the weight vector of the combiner as

W(k) = [w0 (k) w1 (k) w2 (k) .... wn(k)] T(2.2)

equation 2.1 can be rewritten as TI
y(k) = W(k)T X(k) (2.3)

where X(k) is the input vector. The weight vector depends

on the output and the desired response. The adaptive

process minimizes the average power of the error signal or

mean-square value defined by the following equations:

e(k) = d(k) - y(k) (2.4)

= d(k) - W(k)X(k) (2.5)

e(k) 2 = [d(k) - W(k)T X(k)J 2 (2.6)

c(k) = d(k) 2  _ 2"d(k)X(k)Tw(k)

+ X(k) TW(k)W(k) TX(k). (2.7)

10



Then by taking the expected value of the square of the error

and assuming that X and W are uncorrelated, the mean-

square-error is defined as:

MSE - E[c(k) 2 E[d(k) 2 ] +

E[wTx(k)X(k)T_  - E[2.d(k)X(k)TW] (2.8)

= E[d(k)] 2 + W TE[x(k)X(k) TW

- 2.E[d(k)X(k)T 3W (2.9)

= E[d(k)]2 + W TRW - 2 .pTw (2.10)

where R is the input correlation matrix and P is the cross-

correlation matrix between the desired signal and the input

signal. (11:15-26)

When the input signal and desired signal are statistic-

ally stationary, the MSE is a quadratic function of the

filter weight components. This quadratic function forms a

performance surface on which the adaptive algorithm will

continuously seek a minimum value. An example of a two

weight performance surface is shown in figure 2.3. Most

adaptive processes find the minimum of the performance

surface by gradient methods. The following definition for

the gradient is used:

8(MSE) T
= 8(MSE) 8(MSE) ... 6(MSE) (2.11)

= 2.RW - 2P. (2.12)

11



10.0-

4.0-

2.0

0.0-o
-4.0

2.5 0.0 -2.000 -2.5
WI

wo

Figure 2.3. A Two Weight Performance Surface (11:25)

The minimum mean-square-error (MMSE) is obtained by setting

equation 2.12 equal to zero:

2.RW" - 2P = 0 (2.13)

where WO is defined as the optimum weight vector. As long

as there exists an inverse for &, the optimum weight vector

can then be defined as

W° = R-1p. (2.14)

Finally, by substituting equation 2.13 into equation 2.9 the -I

minimum MSE is obtained:

MMSE = E[d(k) 2 + W.TRW- - 2pTwo (2.15)

and after simplifying,

MMSE = E[d(k)2 ] - pTw°. (2.16)

12



The minimum MSE is represented in figure 2.3 as the bottom

point on the parabolic surface. (11:15-27)

A typical adaptive algorithm adjusts the system

parameters by determining the gradient of the mean-square

error of the system inputs (11:20). The gradient is set

equal to zero to obtain a minimum mean-square error of the

adaptive process (11:21). Two algorithms used to determine

this minimum are Newton's method and the steepest descent

method (11:99). Each iteration of these algorithms requires

an estimate of the gradient of the mean-square error

(11:99).

A simpler and more commonly used algorithm is imple-

mented by approximating the steepest descent method. This

is called the least-mean-square (LMS) algorithm (11:100,

9:67). Its implementation is typically restricted to

non-recursive adaptive filtering techniques which are of

primary interest in this research. Instead of taking the

gradient estimations of the mean-square error at each

iteration, the LMS algorithm simply estimates the gradient

by replacing the mean-square e. ror with the square of the

error. This deletes the complex requirement of estimating

the gradient by averaging the square of the error. Using

the steepest descent method, the filter weights were

iteratively updated requiring that the gradient of the mean-

square error be calculated during every iteration:

W(k+l) = W(k) - iV(k) (2.17)

13



where p is a convergence factor used to insure stability of

the filter as well as control the speed of operation and

noise. Since the LMS algorithm estimates the gradient by

using the square of the error, the weight update equation

becomes

R(k+l) = R(k) + 2pe(k)X(k) (2.18)

where the convergence factor is 2p. Without the averaging

process used in the steepest descent method, a noise

component is retained. However, the adaptive process acts

as a low-pass filter to attenuate this noise. (11:99-103)

Adaptive Filtering of MEG Sianals

A useful method of EEG and MEG signal estimation is to

average many short periods of measurement related to an

actual stimulus. Additional improvement of these event

related signal estimates has been obtained by applying

Weiner or minimum mean-square error (MMSE) filtering.

Results of this technique have been mixed because MMSE

filtering requires a stationary signal. The actual charac-

teristics of ERP and ERF signals must be known to accurately

apply MMSE filtering. (6:835)

The time-varying nature of ERF and ERP signals lead to

the possibility of applying adaptive filtering to the

problem of removing noise related to physiological sources.

An interference canceler (shown in figure 2.4) can filter

the noise component of the signal. The interference

14



canceler produces a signal at the output of the adaptive

processor (y) that is very similar to the noise component of

the signal plus noise. After a subtraction process, the

output of the system closely resembles the original signal

without noise (11:11). The noise component of the signal

plus noise and the noise input to the adaptive processor (x)

must be different signals that exhibit the properties of

statistical correlation to one another.

s+n d

Figure 2.4. Interference Canceler (11:10)

15



There are several successful examples of adaptive noise

canceler implementations. Thakor has shown that a noise

canceling adaptive filter can reduce the number of ensemble

averages required to accurately measure evoked potentials

(9:6). A noise canceling adaptive filter was applied by

Yama et al. to remove unwanted eye-blink noise from EEG

signals (15:860).

Uncertainty of the statistical characteristics of the

ERF and ERP signals make the interference canceler of figure

2.4 a less than desirable method of filtering MEG noise.

There is no documented evidence of correlation between the

ERP and ERF. Without correlation, there is no basis for

proper noise cancelation. However, the block diagram in

figure 2.4 can be modified slightly to implement a signal

enhancer instead of a noise canceler. The only change

needed is to use the output of the adaptive processor as the

output of the system (14). Detection of the mimumum error

by the adaptive processor means that the output of the

adaptive processor (y) and the signal plus noise input (d)

are nearly matched. Thus, the output of the system is an

enhanced version of the signal plus noise input.

The above signal enhancing adaptive filter scheme can

be applied to ERF and ERP signals if there is correlation

between the two signals. The relationship of electric

currents and magnetic fields along with observed similar-

ities of signal characteristics suggest a correlation;

16



however, the question of correlation has not been defini-

tively answered (1:473-475).

Since the ERF signal holds more promise in locating

sources of brain activity, application of the signal

enhancing adaptive filter would emphasize the ERF by

designating it as the desired signal. In reference to the

above discussion of the signal enhancer, the ERF signal

would replace the signal plus noise input (d) to the filter

and the input to the processor (x) would be the ERP signal.

17



III. Experimental Procedure

This chapter will describe the experimental configura-

tion and procedures used in recording ERF and ERP data. The

methods used in generating the stimulus will be presented

first, followed by a discussion of the Superconducting

Biomagnetometer, and finally a review of how the data was

recorded.

Figure 3.1 is a block diagram of the experimental

apparatus showing the stimulus generator, the superconduc-

ting biomagnetometer, and data gathering equipment. All

experimental equipment is located in the Biomagnetic

Laboratory at the Armstrong Aerospace Medical Research

Labaratory (AAMRL).

Stimulus Generation

The experimental configuration was set up to provide

either a visual stimulus or an audio stimulus. The configu-

ration of the visual stimulus is shown in figure 3.2 and the

audio test configuration is shown in figure 3.3. The visual

stimulus was a flash of light projected through a translu-

cent checkerboard screen. The duration of the flash was

controlled by a waveform generator that triggered a servo --

controlled shutter mounted to the light source. This

trigger was also supplied to the Masscomp 5400 computer as a

time reference. The duration of the visual stimulus was

0.02 seconds with a 0.1 second pre-trigger interval. The

18



STIMULUS GENERATION AND DATA
ACQUISITION SYSTEM
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Figure 3.1. Experimental Configuration
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total time duration of each experimental trial was 0.5

seconds. A red light-emitting-diode was mounted on the

checkerboard screen to provide a point of focus for the test

subject. The subject viewed the checkerboard screen through

the chamber entrance. Placement of the measurement equip-

ment required that the subject lay face down on the table

and view the screen through a mirror that was aligned to

provide a full view of the screen. The subject's face was

supported by foam padding to provide stability and comfort.

Holes were cut in the padding for breathing and visual

access to the stimulus.

The audio stimulus was provided by three separate

function generators. The resultant waveform from the output

of the third function generator was a modulated pulse with a

600 hertz carrier and a total duration of 0.08 seconds. The

first function generator also supplied a timing trigger to

the Masscomp 5400 computer. The modulated signal was

amplified and converted to an audio tone supplied by a horn

driver. Vinyl tubing carried the audio tone into the

shielded chamber. The tubing was fed into two plastic ear

plugs worn by the test subject. A single test trial, with a

total duration of 0.5 seconds, consisted of a 0.1 second

pre-trigger or waiting period, the 0.08 second tone and a

response period of 0.32 seconds.

20
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Figure 3.2. Visual Stimulus
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Figure 3.3. Audio Stimulus
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Suverconductive Biomagnetometer

As shown in figure 3.1, the biomagnetometer consists of

a dc superconducting quantum interference device (SQUID)

located within a shielded chamber. The SQUID measures the

biomagnetic waves associated with brain activity or as

defined previously, the magneto-encecephalogram (MEG). In

addition to the MEG, electrical potential waveforms or

electro-encephalograus (EEG) are also recorded within the

chamber via electrodes mounted to the test subject's scalp.

Both MEG and EEG data are collected within the shielded

chamber as a visual or audio stimulus is provided to a test

subject. As discussed previously, the waveforms measured as

a direct result of a stimulus are called the ERF for evoked

response field and ERP for evoked response potential.

The shielded chamber is designed to restrict electro-

magnetic waves from entering the test area and adversely

affecting the data. The dc SQUID is particularly sensitive

to electromagnetic interference. The chamber is enlosed on

all sides and the data is collected close to the chamber's

center to maximize the shielding effect. The walls of the

shielded chamber are constructed of two layers of permalloy

having a very high relative permeability. External fields

are attenuated by the enclosure because the lines of

magnetic flux are concentrated around the exterior walls due

to their high relative permeability. (5:59)

Magnetic flux changes associated with brain activity
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are detected by the dc SQUID. This thesis will not go into

a detailed account of SQUID theory; however, several

references, including DeRego and Dowler, are available. The

SQUID is actually constructed using several superconducting

loops as detectors. This particular configuration is called

a second order gradiometer. The gradiometer loops are made

of niobium metal: a superconductor at 9.2°Kelvin. All

superconducting components of the squid are held at a

constant temperature of 4.2°Kelvin by submerging them in a

dewar of liquid helium. The dewar and detection components

are housed in super insulated fiberglass mounted on a gimbel

which can be positioned above the test subject's head. The

gradiometer components are located in a thin tube that

protrudes from the bottom of the dewar. This tube is placed

directly against the subject's head when MEG measurements

are being recorded. (5:51-60, 4:42-44)

A thin elastic cap with one centimeter spaced grid

lines was placed over the subject's scalp as a measurement

location reference. The zero-zero point of the grid is

located at the inion (a protrusion of bone at the back of

the skull). For both visual and audio measurements, the

SQUID was placed typically at three centimeters left of a

line separating the head from the bridge of the nose (the

nasion) to the inion and seven centimeters up from the inion

(see figure 3.4). Placement of the EEG electrodes depended

on the type of response. For visual responses, electrodes
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were placed in the 01 position which is defined as 10% up

from the inion and 10% down from the Cz point. This is more

clearly shown in figure 3.4. For audio responses, the

electrodes were located at the C3 or C4 position; 50% up

from the bridge of the nose and 10% down from Cz (see figure

3.4). In addition to the measurement electrodes, reference

electrode were mounted behind the subject's ears and ground

electrodes were located on the chin. All electrodes were

applied directly to the scalp or skin with an adhesive.

box

C3

NASION %o1

INION
REFERENCE

Figure 3.4. Electrode Placement
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Data Recording

The output signals from the dc SQUID and the electrodes

were fed to an amplifier and bandpass filter (see figure

3.1). The pass band was set between 0.1 and 30 hertz for

each channel and the amplification was set at 100 due to the

small signal amplitude furnished by the measurement equip-

ment. The amplification factors were included in all

calibration calculations. The filtered signals were simul-

taneously sent to an oscilloscope for real-time monitoring

and to the Masscomp 5400 computer for recording. As

discussed previously, a timing signal or trigger was

supplied to the Masscomp 5400 by the stimulus device.

The Masscomp 5400 Laboratory Computer receives all

signals as an analog input. Figure 3.5 shows the signal

path within the Masscomp 5400 from the input, where the

signals are digitized and multiplexed, to the record device.

In this particular case, the MEG signal was processed on

channel zero, the EEG on channel one, eye blink data on

channel two, and the trigger on channel three. The trigger

also supplied timing information to each channel. Both the

EEG and MEG signals went through a signal averager which

would continuously average the signals over the half second

trial interval before plotting them on the screen. The

signals were fed simultaneously to an output multiplexer for

recording in ASCII format. This final ASCII formatted data,

consisting of unaveraged single event evoked responses, was
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used exclusively in this experiment. Note the scales on the

plot devices: femto-Tesla for MEG signals and micro-Volts

for EEG signals. These scales will remain consistent

throughout this thesis.

All data collected by the Masscomp 5400 can be stored

on magnetic tape. However, for the purposes of processing,

the ASCII data for this experiment was transferred to floppy

disk for use on a personal computer. Data processing,

including signal averaging, signal extraction, spectral

densities, and plotting were implemented on The DADISP

Worksheet signal analysis software by DSP Development

Corporation.
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IV. Statistical Characteristic and Modeling of MEG
and EEC Signals

In order to demonstrate the effectiveness of adaptive

processing on ERF and ERP signals, it is first necessary to

properly model the evoked fields and potentials that result

from a human visual response. Modeling will be based on a

statistical analysis of the evoked signals. Investigation

of the statistical nature of these signals will include

noise characteristics, signal latencies, and spectral

content.

Statistical Charateristics

As discussed previously, magnetic field measurements of

the brain have shown great promise in localizing specific

sources of brain activity. Field measurements resulting

from evoked stimuli such as a visual pattern or auditory

tone have been used with some success in mapping the

locations of where these processes take place within the

brain. In studying MEG signals that result from a visual

stimulus, the goal is to extract as much information as

possible from the portion of the signal produced as a direct

result of the stimulus. Accurate extraction of the evoked

signal is difficult due to the low signal-to-noise ratio

(SNR) caused by various sources of background noise. This

background noise is impossible to filter out using linear

filtering techniques because much of the background noise
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and evoked signal lie within the same signal spectrum.

Figure 4.1 shows a typical visual ERF and figure 4.2 shows a

background MEG signal of the same length with virtually no

stimulus. A comparison of these two signal plots yields a

small signal-to-noise ratio.

NO0,0

I--|

-10010,

,c -0O0, 0

I I l I I

,00 O ,0 0,O 0 0,15 0O0 05 0,30 O s 0,40 0,45
TIME( SEC)

Figure 4.1. Visual ERF Signal
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Figure 4.2. No Stimulus MEG Signal

To increase the signal-to-noise ratio of the MEG evoked

signal, it is common practice to ensemble average many

signals produced from the same stimulus. An improvement in

signal-to-noise ratio will result as succesively more

ensembles are averaged together. For example, the signal in

figure 4.3 shows an ensemble average of 80 visually evoked

MEG signals. From this ensemble average, the evoked

response can be identified on the plot. (9:8)
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Figure 4.3. Ensemble Average of Evoked Signals

The technique of ensemble averaging is a simple method

for improving the SNR of signals. However, several dis-

advantages become evident when using this technique as a

means of improving MEG signal-to-noise ratio. One major

disadvantage is the need to average many signals. This

requires that the subject be stationary and alurt over

successive trials of an experiment. This may not seem like

a critical problem when recording only 80 separate re-

sponses, but the experimental trials add up quickly when

doing more complex experiments such as magnetic field
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mapping of portions of the brain. Constant repetition of

the evoked stimulus may lead to fatigue In the subject and

therefore have an impact on the experimental results. A

second disadvantage in ensemble averaging is the possible

loss of important information. Both the ERF and ERP signals

exhibit nonstationary characteristics. During ensemble

averaging, these characteristics, in the form of signal

latencies, are averaged out of the final resultant signal.

Figure 4.4 is an overplot of three separate MEG evoked

responses showing the different latencies of each signal.

200,0

0,I-V

-II

Figure 4.4. ERF LatenciesJ
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These latencies may contain important information related to

localization or they could be caused by inconsistencies in

the test apparatus. In any event, obtaining consistent

results over a long period with many experimental trials has

proven to be a difficult task. (5:44)

Despite the possibility of losing significant informa-

tion associated with signal latencies, ensemble averaging

still proves to be the best method for determining signal

statistics. Generalized evoked stimulus waveforms were

obtained by ensemble averaging 80 ERF and ERP signals. An

overplot of these two signals is shown in figure 4.5. As

discussed in the previous chapter, the scales on the ERF and

ERP signals were adjusted to fit the waveforms to the same

relative range for plotting. Constant offsets or biases

were evident in both ERF and ERP averaged signals for the

particular subject data represented in figure 4.5. Using

the plotted scale, the ERF averaged signal had a mean of

11.40 and standard deviation of 16.36. The ERP signal mean

was -3.58 with a standard deviation of 18.74. The differ-

ences in the mean can most likely be attributed to the test

apparatus. The mean and standard deviation are used here

only to compare the ensemble averaged ERF and ERP signals

and do not apply to individual signals because they are non-

stationary.

The plots in figure 4.5 show a general similarity to

one another in waveform peak locations and waveform periods.
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This apparent correlation Is even more significant after

inverting the ERP signal by multiplying it by negative unity

as in figure 4.6. A cross-correlation plot was generated on

the ERF and inverted ERP and is shown in figure 4.7. The

center peak of this plot represents a maximum correlation.

In the following chapter, the apparent correlation of ERF

and ERP signals will be further developed as a critical

requirement for adaptive filtering. Similar correlation

plots were obtained using ensemble averaged audio ERF and

ERP data.
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Z~ !!

00,
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Figure 4.5. ERF and ERP Average Signals
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Figure 4.6. ERF and Inverted ERP
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Figure 4.7. Inverted ERP and ERF Cross-correlation
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Power spectral densities of the ensemble averaged ERF

and ERP signals were analyzed to further verify the similar-

ities between the two signals. Figures 4.8 and 4.9 show the

spectral densities of the ERF and ERP ensemble averaged

signals. As expected, most of the signal energy in both

signals is located at low frequencies (0.5 to 13 hertz).

This checks with the frequency ranges presented previously.

In this particular case, a major portion of the spectral

density in both plots is in the five to six hertz region.

Large zero frequency values are ignored as biases in the

test apparatus.

'3
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Figure 4.8. MEG Spectral Density
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Figure 4.9. EEG Spectral Density

Ensemble averaging has shown several similarities

between the ERF and ERP signals. These similarities will be

used as a basis for signal modeling and as an important

requirement for adaptive processing techniques.

Sianal Modeling

For the purposes of analysis, both the ERF and ERP

signals will be modeled using a simplified version of the

ERP model presented by McGillem and Aunon (8:71-100). Their

model can be represented by the following equation:

K

x(t) =Zaks(t-t) (4.1)
k=1

where the coefficient a k and time delay tk are independent
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identically distributed random variables. The function

s(t), is a single waveform representing a component of the

ERP. The amplitude coefficient and time delay random

variables are represented by a gaussian distribution. The

waveform components can utilize either gaussian shaped

wavelets or a raised cosine pulse. Several models were

developed using different latencies and different combina-

tions of waveforms.

In order to maintain a consistent set of data for

adaptive processing, a simplified version of the above model

will be presented. This model, shown in Figure 4.10, is

represented by a full sine wave added to an attenuated half

sine wave. The three signal peaks, two positive and one

10,0

0.0

-50,0'

-too0O

I I I I I , i, I I
0,00 0,05 0.10 0,15 0,20 0.25 0.30 0.35 0, 0 0, S

TIME(SEC)

Figure 4.10. Simulated ERP Signal
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negative, are consistent with the MeGillem and Aunon model

(8:92). Independent latencies on each sine wave component

are not used on this simplified model. However, the

starting point of the total waveform can be adjusted to

simulate signal latencies as shown in Figure 4.11. This

same basic model has been used in previous ERP signal

processing studies by Thakor (9:8) and Yu (16:735).

QC6
5QII

50 ,

-I0,0o

-100.0.

0100 0,0l 010 I 0, 0 0,2 0.30 0.35 0,40 0 5
TIME(SEC)

Figure 4.11. Simulated ERP Signals With Latencies
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The similarities between the ERP and ERF signals

discussed previously serve as a basis for using the same

model for both signals. The ERP signal can be Inverted by

multiplying by negative unity to more realistically simulate

the waveform in Figure 4.5. With the addition of white

gaussian noise, the generalized signal waveform is defined

(see figure 4.12).

tOO.Q

a

0,00 0,05 0.10 015 00 025 30 0,35 0.40 0,4S
TIME(SEC)

Figure 4.12. Generalized Model Plus Noise
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V. ADAPTIVE FILTER IMPLEMENTATION

This chapter will discuss the filtering of ERF signals

using the ERP as a reference signal. A simplified model of

this adaptive process will be presented along with a

description of the computer program that actually processes

the signals of interest. The adaptation process will first

be discussed in terms of the signal model presented in

Chapter IV. Adaptive filtering using human visual and audio

evoked responses will follow. Additionally, each filter

output sample, using either modeled or human data, will be

analyzed to determine its validity.

Signal Source and Adaptive Processing Model

As discussed previously in Chapter II, adaptive signal

processesing is implemented using a signal enhancing version

of the adaptive filter shown in figure 2.4. Further

definition of the signal enhancing model as applied to ERF

and ERP signals is shown in figure 5.1. In this model, the

ERF plus MEG signal is designated as the desired signal (d).

The ERP plus EEG is the input to the adaptive processor (x).

The output of the adaptive processor (y) is subtracted from

the desired signal to obtain the error signal (c). In

theory, the adaptive processor output should converge to a

signal similar to the desired signal minus the noise as the
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error signal approaches zero. As figure 5.1 indicates, all

input signals originate within the human brain and some

correlation exists between the ERP and the ERF. Noise due

to the measurement equipment such as the SQUID, electrodes,

and bandpass filter, is also indicated in figure 5.1.

However, to simplify the signal model, these noise sources

were assumed to be small compared to the EEG and MEG and

were therefore neglected.

HUMAN BRAIN

MEASUREMENT
MEG EQUIPMENT

NOISE

Figure 5.1. Signal Source and Adaptive ModelJ

d1

Adaptive Filter Prooram
As discussed in Chapter II, adaptive processing of the

ERP and ERF was implemented using the least-mean-square
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(LMS) adaptive algorithm. As stated previously, an error

signal, c, Is determined by subtracting the output of the

adaptive processor from the desired signal (the ERF in this

case). This was given in Chapter II as

e(k) = d(k) - W(k)T X(k) (2.5)

where W(k) is the weight vector at time k, and X(k) is the

input vector at time k. The LMS algorithm utilizes the

error signal and the input signal to continuously update the

weights using the following equation:

W(k+l) = W!(k) + 2pe(k)?[(k) (2.16)

where 2p is a convergence factor.

The above algorithm was implemented on a personal

computer using the Turbo-Pascal programming language by

Borland. A listing of this program is located in Appendix

A. To simplify data processing, this adaptive filtering

program was converted to an executable file for utilization

as a stand alone program. It is capable of handling up to

8000 data points with up to 50 weights. Input data files,

called from disk drive A, must be designated as 'meg.dat"

and "eeg.dat" which represent the ERF signal and ERP signal

respectively. The data run number, p (the convergence

factor with limits of 0.0 to 1.0), and filter size, are

entered at the keyboard. The filter output and error

signals are displayed on the computer monitor and saved on

disk drive A.
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Adaptive Processing Using Modeled Siznals

To demonstrate that the LMS program operated properly

and that adaptive processing is a plausible method of ERF

noise filtering, a series of experiments using modeled data

was undertaken. The following list describes each ex-

periment:

(1) The same signal plus random noise was applied to
both the desired input and reference input.

(2) Two different signals plus noise were applied to
the inputs. The waveforms of the two signals were the
same but the desired input signal waveforms are
negative while the reference input is positive.
Additionally, waveform latencies were random.

(3) This experiment was similar to Experiment Two
except that both inputs were positive. Again,
waveform latencies were random.

(4) The signals in this experiment were the same as
those used in Experiment Three but with a delay added
to the reference input signal.

(5) The desired signal and reference signal were
correlated as in Experiment One. However, in this
experiment, human MEG and EEG background signals were
added to the model instead of random noise.

Experiment One. The purpose of this experiment was to

insure that the LMS program could filter the random noise

associated with the desired signal and reference signal.

The noise added to each signal was not correlated. The two

filter input signals were exactly the same before the noise

was added and consisted of five concatenated versions of the

signal model presented in Chapter IV. This model is shown

in figure 5.2. Notice that the signal amplitude is normal-
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Ized as will be all subsequent signal amplitudes presented

in this chapter. Figure 5.3 shows the same signal as in

figure 5.1 with random noise added. The amplitude of the

random noise was also normalized before adding it to the

modeled signal. A signal-to-noise ratio of unity was there-

fore obtained.

The two signals plus noise, representing both the

desired signal input and the reference signal input, were

applied to the LMS filter using a convergence factor, p, of

0.005 and a filter size consisting of 20 weights. Choice of

these parameters was based on the following equations and

actual filter output results (12:211):

n
M Vj -(5.1)

N

1
and 0 < 1 < (5.2)

n.(signal power)

where

M = filter misadJustment
n = number of weights or filter size
N = number of training samples.

MisadJustment is defined by Widrow as "a measure of how

closely the adaptive process tracks the true Wiener solution

(11:110)." A typical value for many engineering problems is

10%; however, the above equations apply up to a misadjust-

ment value of 25% (13:1155). Using a misadjustment value of

10% in equation 5.1 with the number of training samples
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equal to 100, the number of weights required in the adaptive

filter is 10. Using this number in equation 5.2, the upper

limit for the convergence factor is found to be 0.1 (signal

power for the normalized signal is one). The value of p

used in the filter is typically on the order of 10% of the

upper limit (11:106).

Using the values obtained from 5.1 and 5.2 as a

baseline, the Experiment One data model was run through the

filter. After several data runs, it was found that optimum

filtering of the model occurred using 20 weights with a

convergence factor of 0.005. Both values meet the require-

ments of equations 5.1 and 5.2.

Results of Experiment One are shown in figures 5.4 and

5.5. Figure 5.4 shows the filter output while figure 5.5 is

an overplot of the input reference signal and the filter

output. It can be seen from figure 5.5 that a significant A

amount of noise was filtered from the input signal. This is

also shown in figure 5.6, an error plot generated by

subtracting the filter output from the desired signal

waveform model and squaring the result. Notice that the

error starts off fairly large at the beginning of each 0.5

second response and decreases until the beginning of the

next response. This illustrates the adaptive process as it

converges to a minimum error. The non-stationary nature of

the signal forces the adaptive processor to continuously

search for the minimum error.
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Figure 5.5. Experiment One Model and Output
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Figure 5.6 Experiment One Error Magnitude

Experiment Two. This experiment was designed to repre-

sent the non-stationary nature exhibited by the ERP and ERF

signals. The desired signal, representing five ERF signals

plus noise with random latencies for each signal, is the

same as that of Experiment One. This signal is shown in

figure 5.7. The filter input signal also consists of five

separate signals and represents the ERP. However, unlike

Experiment One, the reference input signal latencies do not

necessarily match those of the desired signal. Addition-

ally, each ERP signal is a negative representation of the

model presented in Chapter IV (see figure 5.8). This corre-

sponds to a negative correlation between the desired signal,
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the ERF, and the reference input signal, the ERP.

The filter size and convergence factor for Experiment

Two were the same as that of Experiment One. The filter

output signal is shown in figure 5.9 with an overplot of the

output signal and reference signal shown in figure 5.10.

Notice that the signal waveform features evident in the

Experiment One output signal are more difficult to pick out

in the Experiment Two output. It is apparent that the

adaptive process is complicated by the differences in signal

latencies between the reference signal and the input signal.

Additionally, the negative correlation resulted in a slight

delay in the output and a noticeable phase difference

between the output and the reference signal. The error

magnitude signal is shown in figure 5.11. As in Experiment

One, the large error peaks coincide with the starting point

of the first waveform in each of the five responses. In

most cases, the error decreases until the beginning of the

next response waveform. The error magnitude of each

response is dependent on the correlation between the desired

signal and the reference input. A rapidly decreasing error

curve is evident when there is good correlation.
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Figure 5.10. Experiment Two Output Signal and Model
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Figure 5.11. Experiment Two Error Magnitude

Experiment Three.- As in Experiment Two, both the

desired signal and the reference input signal had random

NI

latencies. In this experiment, however, the filter input

signal was multiplied by negative unity to obtain a positive

correlation between the Input signal and the reference

I-.

signal (see figure 4.6). This was done in order to speed up

the adaptation proce ss by minimizing the processing delay

caused by negative correlation between the desired and

reference signals. Previous tests on the LMS adaptiveI

filter using a sine wave as the desired Input and a phase

shifted sine wave as the reference input had shown that an

decrease in the phase offset between the two inputs resulted
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in a decrease in filter convergence time. This idea was

extended to the signals in this experiment, where there is

essentially a 1800 phase shift between signals.

The filter size was again 20 weights with a convergence

factor of 0.005. Figure 5.12 is a plot of the output signal

and figure 5.13 shows an overplot of the output signal and

the filter reference signal. Some of the phase shift due to

processing delay has been reduced and most signal peaks are

clearly evident in figure 5.13. However, the third large

positive signal peak is difficult to differentiate from the

noise. This can be explained by comparing the reference

input signal to the desired signal. A very large latency

difference exists between the second and third signal model

of the filter input. The correlation between the two

signals is very small during this time period resulting in a

loss of signal information. This lack of correlation also

shows up as an increase in the error signal magnitude (see

figure 5.14). A comparison of the error magnitude with that

of the Experiment Two error magnitude does not show a clear

improvement in the filter output signal for each of the five

responses after multiplying the reference signal by negative

unity. As in Experiment Two, large errors are evident at

the beginning of each individual response and decrease until

the beginning of the next response as the adaptation process

converges.
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Figure 5.14. Experiment Three Error Magnitudo

Experiment Four. This experiment was designed to take

advantage of a delay in the desired signal to make the

impulse response of the filter causal and physically

realizable. All conditions of Experiment Three were

repeated except a delay of half the filter size (10 data

points in this case) was added to the beginning of the

desired signal. The size of the delay is chosen such that

the peak of the impulse response will be centered along the

delay line of the adaptive filter. (11:325)

Figure 5.15 is a plot of the Experiment Four output

signal and figure 5.16 shows an overplot of the output

signal with the desired signal. All signal peaks can be
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seen In figure 5.16 but a large phase delay exists between

the two signals. The phase delay also substantially

Increases the error signal magnitude as shown in figure

5.17. Any advantage gained in waveform Identification using

the delay technique of this experiment is offset by the

large phase delay of the output. This technique was

therefore not used on human data.

l.3l

0,0,

0.5

0,0 O 1 01 0, 1 0, .8, 1.0 1,2 1,4 146 118 2,0 2,2 2,4
TIME(SEC)

Figure 5.15. Experiment Four Output Signal

57



DESIRED SICNAL

FILTER OUTPUT

0,0 0.2 044 0,6 Oil 1#0 112 1,4 13 1.9 2.0 2.2 2,4
TIME(SEC)

Figure 5.16. Experiment Four Output and Desired Signals-

u 5

I I I 58

TINEC(SEC)--

Figure 5.16 . Experiment Four tpt oan DesiedeSgnl

2.58

b2 l I p



Experiment Five. The objective of this research Is to

improve the ERF signal detection when it is degraded by

background MEG. This final experimental effort therefore,

was designed to test the adaptive filter using a modeled ERF

signal corrupted by human background MEG.

Correlated signals representing the ERF and ERP were

added to the MEG and EEG respectively. Figure 5.18 shows

the normalized ERF model corrupted by the normalized MEG by

adding the two signals together. The EEG signal, which was

added to the ERP, was not correlated with the MEG signal.

As in the previous experiments, the modeled ERF plus MEG was

applied to the desired signal input of the filter and the

modeled ERP plus EEG was applied to the filter's reference

input. The output of the filter is shown in figure 5.19

with an overplot of the desired signal. The error magnitude

between the non-corrupted desired signal and filter output

is shown in figure 5.20. After initial adaptation of the

filter, the error decreased and stayed fairly constant over

each of the responses. A large error on the last response

can be explained by examining the desired input signal in

figure 5.18. The last ERF signal, at around the 2.3 second

point on the plot, added to a background signal of approxi-

mately the same duration and frequency. The addition of

these two signals was subsequently enhanced by the filter

resulting in a waveform with a higher amplitude than the

original desired waveform.
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Figure 5.19. Experiment Five Output and Desired Signal
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Figure 5.20. Experiment Five Error Magnitude

Adaptive Processing Using Human Signals

Based on the experimental filtering results and

comparisons of the error signals, it was determined that

actual ERF filtering would proceed using a filter size of 20

weights and a convergence factor of 0.005 and the methods

used in Experiment Three would be repeated using actual

human visual and audio data.

As in the previous experiments, five visual ERF signals

were applied to the desired signal input with the simultan--

eously recorded ERP signals applied to the reference input.

Based on the modeling experiments, no additional signal

enhancement was gained by using more than five signals. As
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shown in figure 5.21, a single filtered response (the third

ERF of the five concatenated signals) taken from the filter

output signal shows a typical ERF. Any Judgement on the

accuracy of this signal is impossible because a complete a

priori knowledge of the ERF signal is not available.

However, comparisons can be made to the ensemble average of

80 signals shown in figure 5.22. A close approximation is

made to the general shape of the ensemble averaged signal as

far as the location of signal peaks is concerned. However,

a delay caused by filter processing and the low convergence

factor is evident.

After reviewing the above filtering results, it was

determined that an optimization of the convergence factor

was necessary in order to reduce the filter output delay.

Due to the non-stationary nature of the ERF and ERP signals,

rapid convergence of the LMS filter (without sacrificing too

much noise in the process) is required. Recall from Chapter

II that the optimum weight vector, WO, is dependent upon the

inverse of the filter input correlation matrix, E, and the

cross-correlation matrix between the desired input and the

filter input, P. Each of these matrices can vary from

response to response resulting in a constant shifting of the

performance surface. Therefore, a rapid convergence rate is

required in order to track a moving performance surface

where the lateral movement of the surface is primarily due

to a change in the cross-correlation matrix, P.

62



0,4

-0,2

0.00 0,05 0.10 015 0,20 O.Z5 00, 0.3A 0,0 0.45
TIME(SEC)

5.21. Single Response Filter Ouput

1.01

0.

-0,5"

0100 0.0S 01,0 0.is 0.O O.is 0.30 0,35 0140 014S
TIME(SEC)

Figure 5.22. Average of 80 Responses
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Optimization of the convergence factor was implemented

by modifying the previous LMS program to vary p based on the

input signal power. From the previous discussion on

choosing a value for p, it was determined that its range is

limited by the following:

1

0 < P < (5.2)
n.(signal power)

where n is the number of weights or filter size. This leads

to a new definition of p that varies depending on the signal

input power. This is defined as follows:

a
(k) = (5.3)

B + KT (k)X(k)

where a is the normalized adaptation constant and 8 is a

constant used to keep g(k) from becoming too large when the

input signal power is very small. Using equation 5.3 in the

LMS algorithm results in a constantly updated convergence

factor where p(k) is large when the input power is small and

is small when the input power is large. The result is a

filter that adapts more quickly without a large noise

sacrifice. A listing of the Normalized LMS program is

included in Appendix B. (10:83)

A plot of a single Normalized LMS output signal is

shown in figure 5.23 (the third ERF signal out of five

responses). Figure 5.24 is an overplot of this same
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filtered signal with the unfiltered ERP desired input

signal. A comparison of the Normalized LMS filter output

with the previous LMS filter output in figure 5.21 shows

that the lag due to filter processing is reduced.

To further evaluate the Normalized LMS filter perform-

ance, an audio ERF signal was applied to the desired input

with its time sequenced ERP signal applied to the reference

input. Figure 5.25 is the third response out of five output

audio tone responses. Again, this signal is compared with

an ensemble average of audio responses, shown in figure 5.26

with an overplot of the filtered signal of figure 5.25. In

general, the waveform peaks are as evident in the single

waveform as they are in the averaged signal (in this case

the ensemble average included only 26 signals due to the

limited availability of audio response data).
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VI. Conclusions and Recommendations

Conclusions

This research investigated the feasibiltiy of using

adaptive processing techniques, in the form of the Least-

Mean-Squares (LMS) algorithm, to filter out unwanted MEG

background noise from the evoked response field. It is

hoped that the identification of these evoked fields, the

brain's reaction to an audio or visual stimulus, will make

it possible to localize specific origins and patterns of

thought in the human brain. Several brain mapping experi-

ments have been attempted with mixed success due to the

difficulty in accurately identifying the evoked response

field within a large background noise field. Typically,

ensemble averaging of many signals is required in order to

identify the basic shape of the response waveform. However,

ensemble averaging requires that many signals be measured

and recorded. Additionally, signal information such as time

lags and true peak locations may be lost in the averaging

process.

The ultimate goal of this research was to be able to

filter a single evoked response field, using the evoked

response potential as a reference signal, such that no

signal averaging would be required to identify the location

and amplitude of significant signal peaks. By modeling and

adding noise to the signals of interest it was shown that a
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significant amount of noise could.be removed from the

filtered signal. It was also shown that the higher the

correlation between the desired signal and reference signal,

the more effectively the desired signal will be enhanced.

Time lags between the desired signal and the reference

signal made it more difficult to identify signal peaks but

identification was still possible in most cases.

Comparisons of single evoked response field signals

with ensemble averages of real human signals showed a high

correlation in most cases. This was especially true of the

visual response signals. Although the signal peaks were

visible on the audio response plots, they were more diffi-

cult to differentiate than the visual response filtered

signals. This was most likely due to the higher noise

content that the audio signals exhibited. Even so, it was

still possible to filter five audio response signals and

then use ensemble averaging to improve the signal-to-noise

ratio. Comparisons of the five ensemble averaged signals

with a much higher number of ensemble averaged signals that

were not filtered showed similar waveform traits. An

example of this comparison is shown in figures 6.1 and 6.2.

In Experiment Five presented previously, five ERF signal

models with added human MEG background signals were filtered

using the original LMS adaptive algorithm. These same five

signals were again filtered, this time using the normalized

LMS, and ensemble averaged. Figure 6.1 is a plot of the
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average of the five modeled signals. Figure 6.2 is a plot

of 20 averaged signals with no filtering. Distinctive

characteristics of the waveforms are difficult to pick out

in both cases; however, the general shape of the waveform,

including period and amplitude, is at least as good in the

filtered plot as it is in the non-filtered plot. This leads

to the conclusion that the current procedure of waveform

averaging of up to 100 signals can be reduced by using

adaptive processing techniques.

Id

M

07

O

0,00 0,05 0,10 O 15 0,20 0,25 0.30 0,35 Q,40 0, 5

TIME(SEC)

Figure 6.1. Average of Five Filtered Signals
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Figure 6.2. Average of 20 Unfiltered Signals--

Recommendations

This research focused on the feasibility of using

adaptive processing techniques to improve evoked response

field signal-to-noise ratios. The basic LMS algorithm was

used with a normalizing modification added to decrease the

filter convergence time. Additional adaptive filtering

techniques are available for further research on this

subject.

Accelerated versions of the LMS algorithm can be found

in Trelchler, et al, along with the Recursive Least Square

(RLS) algorithm (10:86-104). The major advantage of the RLS

algorithm is that the optimum weight vector, H", is computed
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during each iterative step thus insuring that the overall

optimum weight vector is found at the last input data point.

A price is paid in programming complexity when implementing

this algorithm.

Another possible adaptive filter implementation is the

Griffith's Algorithm. Its primary advantage is that the

desired input signal does not have to be known exactly;

however, the correlation function between the desired signal

and the filter input signal must be known. The expected

value or average of the cross-correlation vector is substi-

tuted for the cross-correlation vector by itself. (10:85)

Future study of the brain's response to some outside

stimulus and its relationship to magnetic fields requires

that background MEG noise be minimized. Any of the above

mentioned adaptive algorithms could be used as a basis for

further research on this subject.
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Appendix A: The LMS Program -

{$R+)

PROGRAM LMS1;

{ Program Name: LMS1 }
{ Programming Language: Pascal V.4 1
{ Program Writer: Roger A. Wood}
{ This program is designed to adaptively filter a given

input signal "S" based on a reference signal "N". It is
capable of filtering up to 8000 data points using up to

50 filter weights. I

USES
CRT, PRINTER;

CONST
DataSizeMax = 7999; {8000 data points @ 200 samples/sec.)

TYPE
DataArray = ARRAY[0..DataSizeMax] OF REAL;
Data = ^DataArray;
FileNumber = STRING[3];

VAR
WeightNumber, Clock, FilterSize :INTEGER;
PointerStart :^REAL;
u, Error, OutY, Signal :REAL;
N, S, E, Y :TEXT;
InX :DATA;
Weight :ARRAY[0..50] OF REAL;
DataRunNumber :FileNumber;
EDATFILE, MDATFILE :STRING[20];
CHECKBREAK :BOOLEAN;

PROCEDURE ClearSpace;
{This procedure clears the screen.}

BEGIN
GOTOXY(I,22); CLREOL;
GOTOXY(l,23); CLREOL;
GOTOXY(i,24); CLREOL;

END;
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PROCEDURE GetFilterConstants;
{This procedure initializes the filter constants and reads
in the value of u (the constant convergence constant).)

BEGIN
CLRSCR;
GOTOXY(1,22);
WRITE(Enter data run number (use a number between 000

*and 999). >');
READ(DataRunNumber);
CLRSCR;
GOTOXY(1,22);
WRITE('Enter number of weights in filter (2 to 50). >');
READ(FilterSize);
FilterSize:=(FilterSize-1);
CLRSCR;
GOTOXY(1,22);
WRITE('Enter value of "u" (0.0 to 1.0) >);
READ(u);

END;

PROCEDURE InitializeDataArrays;
{This procedure initializes the filter weights to zero.)

BEGIN
* FOR WeightNumber:=0 TO FilterSize DO

BEGIN
Welght(WeightNumberJ:=0; (Set all weights to zero

initially.)
END;

END;

PROCEDURE RunFilter;
{********* THE ADAPTIVE FILTER ********************}

BEGIN
CLEARSPACE;

(Read in the MEG data)
ASSIGN(S,'A:MEG.DAT*);
RESET(S);
GOTOXY (1,22);

fRead in the EEG data)
ASSIGN(N,'A:EEG.DAT');
RESET(N);
MARK(PointerStart);
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NEW( IN-.X);

{Set up the output files)
ASSIGN(E,CONCAT( 'A:E ,DataRunNumber, .DAT'));
REWRITE(E;
ASSIGN(Y,CONCAT( 'A:Y ,DataRunNumber, '.DAT'));
REWRITE(Y;
GOTOXY(5,24); WRITELN('Running adaptive filter.');
Clock: =0;

(Start running the filter}
WHILE NOT EOF(S) DO
BEGIN

READ(S,Slgnal);
READ(N,IN-XNClock]); write('clock ,clock);

OUTY:=0;
IF Clock=O THEN
BEG IN

Error:=Signal;
WRITELN(E,Error);
WRITELN(Y,OUTY);
WRITELN(error:9:4,OUT_Y:9:4);
Clock: =Clock+1;

END ELSE
BEGIN

IF (Clockc-FilterSize)<=O THEN
BEGIN

FOR WeightNumber:=0 TO Clock-i DO
BEGI N

WeightEWeightNumberJ:=Weight[Weightwumberj+
2*u*Error*IN_XN (Clock-l-WeightNumber)];
OUT Y:=OUT_Y+Weight[WeightNumberJ*
INXN-Clock-WeightNumber J;

END;
Error:=Signal-OUT-Y;
WRITELN(E,Error);
WRITELN(Y,OUTY);
WRITELN(error:9:4,OUTY:9:4);
Clock: =Clockc+l;

END ELSE
BEGIN

FOR WeightNumber:=0 TO FilterSize DO
BEGIN

Weight[WeightNumber]:=WeightEWeightNumber]+
2*u*Error*IN_X-[(Clock-l-WeightNumber)];
OUTY:=OUT_Y+WeightEWeightNumber]*
INXNClock-WeightNumberJ;

END;
Error:=Signal-OUTY;
WRITELN(E,Error);
WRITELN(Y,OUTY);
WRITELN(error:9:4,OUT_Y:9:4);
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Clock:=Clocl;
END;

END;
END;
RELEASE(PointerStart);
CLOSE(S);
CLOSE(N);
CLOSE(E);
CLOSE(Y);

END;

{***************MAIN PROGRAM*********}

BEGIN

Get -iF1lter Constants;
InitializeData_Arrays;
RunTFilter;
END.
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Appendix B: Modified LMS Program

{$R+}

PROGRAM LMS2;

{ Program Name: LMS2 }
{ Programming Language: PASCAL V.4 1
{ Program Writer: Roger A. Woodl
{ This program is a modification of LMS1. The convergence
factor u(clock) in this case change constantly depending on
the power of the input signal. The input data is limited to
2000 data points in this program. }

USES
CRT, PRINTER;

CONST
DataSizeMax = 1999; {2000 data points @ 200 samples/sec.)

TYPE
DataArray = ARRAY[0..DataSizeMax] OF REAL;
Data = -DataArray;
FileNumber = STRING[3];

VAR
WeightNumber, Clock, FilterSize, I :INTEGER;
PointerStart :-REAL;
Error, Out_Y, Signal, A, B :REAL;
N, S, E, Y :TEXT;
InX :DATA;
u,pwr :DataArray;
Weight :ARRAY[0..80] OF REAL;
DataRunNumber :FileNumber;
EDATFILE, MDATFILE :STRING[20];
CHECKBREAK :BOOLEAN;

PROCEDURE Clear_Space;
(This procedure clears the screen.}

BEGIN
GOTOXY(1,22); CLREOL;
GOTOXY(1,23); CLREOL;
GOTOXY(1,24); CLREOL;

END;
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PROCEDURE GetFilterConstants;
(This procedure initializes the filter constants and reads
in the value of u (the constant convergence constant).}

BEGIN
CLRSCR;
GOTOXY(1,22);
WRITE('Enter data run number (use a number between 000

and 999). >');
READ(DataRunNumber);
CLRSCR;
GOTOXY(1,22);
WRITE('Enter number of weights in filter (2 to 80). >'); -

READ(FilterSize);
FilterSize:=(FilterSize-1);
CLRSCR;
GOTOXY(1,22);
WRITE('Enter value of "A" (0.0 to 2.0) >);
READ(A);

END;

PROCEDURE InitializeDataArrays;
(This procedure initializes the filter weights to zero.
Also, the power and convergence factor, u, arrarys are
also initialized.}

BEGIN
FOR WeightNumber:=0 TO FilterSize DO
BEGIN

Weight[WeightNumber]:=0; {Set all weights to zero
initially.}

END;
FOR I:= 0 TO DATASIZEMAX DO
BEGIN

PWR(I):= 0;
U(I):= 0;

END;
END;

PROCEDURE Calc_x_power;

VAR
I :integer;
BEGIN
If (Clock-Filtersize+l) >= 0 Then
BEGIN

FOR I := CLOCK DOWNTO (CLOCK - FILTERSIZE + 1) DO
PWR[CLOCK] := PWR[CLOCK] + IN_X^[I)*IN_XN[IJ;
END ELSE
BEGIN

FOR I:=0 TO CLOCK DO
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PWRECLOCK] :=PWR[CLOCK) +- INXM[I)*INX^[I];
END;

END;

PROCEDURE Run_-Filter;
{**********THE ADAPTIVE FILTER **********

BEGIN
CLEAR-.S PACE;

[Read in the MEG data)
ASSIGN(S,'A:MEG.DAT');
RESET(S);
GOTOXY (1,22);

{Read in the EEG datal
ASSIGN(N, 'A:EEG.DAT');
RESET(N);
MARK(PointerStart);
NEW( IN..X);

(Set up the output files)
ASSIGN(E,CONCAT( 'A:E' ,DataRunNumber, .DAT'));
REWRITE(E);
ASSIGN(Y,CONCAT( 'A:Y ,DataRunNumber, .DAT'));
REWRITE(Y;
GOTOXY(5,24); WRITELN('Running adaptive filter.');
Clock:=O;

(Start running the filter)
WHILE NOT EOF(S) DO
BEGIN

READ(S,Slgnal);
READ(N,1N-.X[Clock]); wrlte('clock = ,clock);

OUTY:=O;
CALC_-XPOWER;
ULCLOCi):= A/(O..1+PWR[CLOCK]);
IF Clock=O THEN
BEGIN

Error:=Signal;
WRITELN(E,Error);
WRITELN(Y,OUTY);
WRITELN(error:9:4,OUT_Y:9:4);
Clock: =Clock+ 1;

END ELSE
BEGIN

IF (Clock-FilterSize)<=O THEN
BEGIN
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FOR WeightNumber:=O TO Clock-i DO
BEGIN
Weight[WeightNumber3: =Weight[WeightNumber 3+
2*u~clock]*Error*IN-XN(Clock-i-WeightNumber));

OUT Y:=OUT_Y+Weight[WeightNumber 3*
INXNClock-WeightNumberJ;

END;
Error: =Signal-OUT3Y;
WRITELN(E,Error);
WRITELN(Y,OUT..Y);
WRITELN(error:9:4,OUTY:9:4);
Clock: =Clock+ 1;

END ELSE
BEGIN

FOR WeightNumber:=O TO FilterSize DO
BEGIN
Weight(WeightNumber3: =Weight[WeightNumber 1+
2*u~clockJ*Error*IN..XM (Clock-i-WeightNumber)];
OUTY:=OUT_Y+WeightEWeightNumberJ*
IN_X'iClockc-WeightNumberJ;

END;
Error: =Signal-OUT-Y;
WRITELN(E,Error);
WRITELN(Y,OUTY);
WRITELN(error:9:4,OUTY:9:4);
Clock: =Cloclc+l;

END;
END;

END;
RELEASE(PointerStart);
CLOSE(S);
CLOSE(N);
CLOSE(E);
CLOSE(Y);

END;

{ ~ ~ ~ ~ MAIN PROGRAM *********

BEGIN

Get -Filter_-Constants;
Initialize_-Data_Arrays;
Run_-Filter;
EN-I.
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Adaptive signal processing techniques were used to filter
out unwanted background noise from the evoked response field
signals obtained from magneto-encephalogram measurements. A
model of the evoked response field signals was first developed
to test the adaptive algorithm in an environment corrupted by
white gaussian noise. Several modeling experiments verified the
feasibility of adaptive filtering using an enhancement design
with a correlated signal representing the evoked potential
response- obtained from electro-enchephalogram measurements. The
experimental results showed that signal estimation is improved
by a strong correlation between the evoked response field and
evoked response potential.

Following the modeling experiments, filtering of actual
evoked responses was attempted. To obtain the evoked field
data, an audio or visual stimulus was provided to a test subject
located inside a shielded chamber. Time sequenced electro-

*. encephalogram and magneto-encephalogram signals were recorded
for later processing using an adaptive filter based on the
least-mean-square algorithm. Accuracy of the filtered human
data could not be quantified due to a lack of a priori knowledge
of the exact signals before filtering. Comparisons of filtered
responses with ensemble averaged responses of up to 80 signals
showed waveform similarities.
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